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Crossing of identical solitary waves in a chain of elastic beads
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We consider a chain of elastic beads subjected to vanishingly weak loading conditions, i.e., the beads are
barely in contact. The grains repel upon contact via the Hertz-type potential,V}dn, n.2, whered>0, d being
the grain–grain overlap. Our dynamical simulations build on several earlier studies by Nesterenko, Coste, and
Sen and co-workers that have shown that an impulse propagates as a solitary wave of fixed spatial extent
~dependent only uponn! through a chain of Hertzian beads and demonstrate, to our knowledge for the first
time, that colliding solitary waves in the chain spawn a well-defined hierarchy of multiple secondary solitary
waves, which is; 0.5% of the energy of the original solitary waves. Our findings have interesting parallels
with earlier observations by Rosenau and colleagues@P. Rosenau and J. M. Hyman, Phys. Rev. Lett.70, 564
~1993!; P. Rosenau,ibid. 73, 1737~1994!; Phys. Lett. A211, 265~1996!# regarding colliding compactons. To
the best of our knowledge, there is no formal theory that describes the dynamics associated with the formation
of secondary solitary waves. Calculations suggest that the formation of secondary solitary waves may be a
fundamental property of certain discrete systems.

DOI: 10.1103/PhysRevE.63.016614 PACS number~s!: 46.40.Cd, 45.70.2n, 43.25.1y
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I. INTRODUCTION

The study of impulse propagation in a chain of coup
elastic beads can exhibit interesting nonlinear dynam
@1–4#. In the absence of external loading between the be
that are barely in contact, any impulse propagates as a
tary wave through a chain of elastic beads@1–8#. The pres-
ence of loading destroys the solitary wave@1–4,9#, which
becomes dispersive as a function of the magnitude of lo
ing. The nature of dispersion is sensitive to the competit
between the amplitude of the impulse and loading. The
fore, the no-loading case@8# is one of the most interestin
regimes in which one can probe the nonlinear dynam
problem of impulse propagation in Hertzian beads. It tu
out that in the absence of loading, any impulse, no ma
how weak, generates solitary waves in the chain of ela
beads@10,11#.

It is well known that acoustic signals, which can be o
tained by sending an impulse in a chain of elastic be
under external loading@8,12#, backscatter off buried inclu
sions in the chain of Hertzian beads. In the absence of s
loading, solitary waves also backscatter off impurities or
clusions in Hertzian chains@13#. Backscattering of solitary
waves from buried inclusions exhibit unusual behavior,
noted in Ref.@13#. In the present study, we focus on a
important idealization of the problem of backscattering
solitary waves, namely, one in which two identical solita
waves traveling in opposite directions cross one anot
This problem is also identical to that of backscattering o
solitary wave from an infinitely massive impurity at the ce
ter of a chain and hence may be relevant to the study of
general problem of backscattering of solitary waves fr
impurities.

This paper is arranged as follows. Section II presents
1063-651X/2000/63~1!/016614~6!/$15.00 63 0166
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details of the model system and summarizes the details o
calculations. The calculations on the crossing of solita
waves in a chain of discrete beads reveal certain pecu
properties associated with the intersection of the solit
waves that are specific to Hertzian systems and are prese
in Sec. III. We mention that there are possible connecti
between the results obtained in this work and those obta
by researchers in a variety of related systems, which are
known as compact solitary waves or compactons@14–19#.
The calculations are further checked by carrying out ext
sive time-reversed dynamical studies. This is reported in S
IV. Preliminary studies on the hierarchy of solitary wav
that spawn at the point of crossing of the solitary waves
discussed in Sec. V. The work is summarized in Sec. VI

II. MODEL SYSTEM AND ANALYSES

We consider a linear system of macroscopic, monod
perse beads of massm and radiusR. We letE ands denote
the Young’s modulus and the Poisson ratio, respectively.
assume that two such beads repel upon intimate contac
cording to Hertz law@20#. To proceed further, we define th
overlap d i ,i 11[D2(r i 112r i), where r i denotes the dis-
placement of graini from the equilibrium position andD is
the initial loading at the grain–grain contact~compression at
equilibrium!. For spherical beads, the repulsive potential
given by

V~d i ,i 11!5~2/5D !~R/2!0.5,

d i ,i 11
n[ad i ,i 11

n if d i ,i 11>0,
~1!

[0 if d i ,i 11,0,
©2000 The American Physical Society14-1
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whereD[3/2($12s2%/E) and n55/2. If n52, the repul-
sive force is harmonic. In general, the constanta and the
magnitude ofn depend upon the contact geometry betwe
the beads and typically varies betweenn55/2 and 3@21#.
Due to the nonlinear nature of the repulsion between a
cent grains, one might expect that dynamical phenomena
volving significant compression and decompression of gra
would be highly nonlinear in nature.

Nesterenko@1–4# used a certain continuum approxim
tion of the relevant equations of motion to show that
impulse initiated in a horizontally aligned system of bea
would travel as a solitary wave when it is far from th
boundary. In addition, Nesterenko showed that his solit
waves spanned some 5 bead diameters@1–4#. Nesterenko
also carried out numerical studies on impulse propaga
albeit with less accuracy@1# than what we shall see in th
present work and reported experiments to demonstrate
propagating solitary waves@2,4#. Recently, high accuracy
numerical work to improve upon Nesterenko’s long wav
length approach has been carried out by Chatterjee@1#. Sev-
eral experiments have since confirmed the presence of
tary waves in Hertzian systems@2,7,22#. It is important to
note that Nesterenko and co-workers did not publish ana
cal, computational or experimental studies on the problem
crossing of two identical solitary waves. Recent work carr
out by some of us have extended Nesterenko’s theore
studies and described the structure of solitary waves in
tems of discrete beads@10#. To the best of our knowledge
the problem of crossing of solitary waves in Hertzian be
chains remains to be explored.

The equation of motion of some beadi ~excluding the
edge grains! in a finite chain of Hertzian beads is given b

md2r i /dt25na$@D2~r i2r i 21!#n21

2@D2~r i 112r i !#
n21%. ~2!

Initially, every grain is placed barely in touch with one a
other such thatD50. We call this the ‘‘no-loading’’ case
An impulse defined by an initial velocityv0 at time t50 is
initiated at the first bead~i.e., at the boundary!. As the im-
pulse propagates, we find via numerical studies that a w
defined solitary wave develops in space and time. Typica
a series of solitary waves of much smaller amplitude are a
generated by an arbitrary impulse. The details of the impu
generation process are intimately connected with that of s
tary wave formation. Thus, impulses generated over mo
time windows~compared to the natural period of the grai
due to the Hertzian potential! can result in the generation o
multiple solitary waves of hierarchical amplitudes. A
present, much work remains to be done to understand
problem of impulse generation versus solitary wave form
tion @8,13#. We shall address this issue later in Sec. V.

Let us focus on the properties of the solitary wave itse
High precision~nine digit accuracy in energy calculation
that demonstrate that energy conservation is accurately v
in our calculations! numerical study of Eq.~2! reveals that
the solitary wave propagates at a fixed velocityc. Hence, the
distance traveled by a solitary wave can be represente
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z5ct, wheret is the elapsed time since the initiation of th
impulse. One can then rewrite Eq.~2! as follows:

mc2 d2wn~z!/dz25$na@wn~z22R!2wn~z!#n21

2@wn~z!2wn~z12R!#n21%, ~3!

which is a convenient form for analyzing the solitary wa
propagation problem. The subscriptn in wn is to remind the
reader that the properties ofw are sensitive to the contac
geometry and hence onn @21,22#. In Eq. ~3!, we use for the
solitary wave solutionwn(z2ct)5„r i(t)2r i(0)… and w„(z
62R)2ct…5„r i 61(t)2r i 61(0)….

The approximate analytic solution to Eq.~3!, which is
described in Ref.@8# and is in impressive agreement with th
numerically generated solution, can be written as

wn~z!5
A

2F12tanhS f n~z!

2 D G , ~4!

where

f n~z!5 (
q50

`

C2q11~n!z2q11. ~5!

The coefficientsC2q11(n) depend onn only and can be
determined by substituting Eq.~4! into Eq.~3!, and minimiz-
ing the integral of the squared difference between the rig
hand side and the left-hand side. Forn55/2, C152.3953,
C350.2685,C550.006 13. The higher order coefficients a
significantly smaller thanC5 .

Our calculations show that forn55/2, the solitary wave
spans about 5 bead diameters@10,13# in perfect agreemen
with Nesterenko’s theoretical and experimental findings@3#.
Using our approach, we also recover that the speed of
solitary wave,c}A1/4, whereA is the amplitude of displace
ment of a bead due to the solitary wave.

The reader should note thatthere is no exact continuum
limit of the problem of impulse propagation in discrete He
zian chains under conditions of no-loading. Therefore, Nes-
terenko’s analyses@1–4# and that of Chatterjee@1# cannot be
directly compared with our work. In our work we have a
tempted to directly solve the equation of motion@Eq. ~3!# by
trial and error. The validation of our solution is presented
the excellent agreement between the numerically gener
and the analytically generated solutions in Ref.@10#. The key
difference between our solution and of the other researc
lie in the fact that we do not need to consider a portion of o
solution to generate the solitary wave.

One may note that a similar problem has been studied
the case ofn54 ~but not for a system of beads with no
loading whered>0) by Kivshar in Ref.@18#.

In our numerical calculations,m51, a51, v051, and the
integration time step is kept at 1023. The calculations have
been carried out using the sixth order Gear predicto
corrector algorithm@20#.

III. CROSSING OF IDENTICAL SOLITARY WAVES

We describe a study in whichtwo solitary waves~as op-
posed to impulses, which invariably generate a hierarchy
4-2
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CROSSING OF IDENTICAL SOLITARY WAVES IN A . . . PHYSICAL REVIEW E63 016614
solitary waves! of same amplitude but opposite displac
ments are initiated at the two ends of a chain with an o
number of beads. The system is set up in such a way tha
solitary waves intersect one another at thecenterof the cen-
tral bead of the chain. It should be mentioned that the res
of collision between solitary waves may be slightly differe
if they do not collide at the center bead but at an arbitr
point along the line joining a bead center to the contact po
between two beads. We do not carry out a systematic s
of such ‘‘off-center’’ collisions in this first study.

An important question to address is whether at the po
of intersection, the opposing solitary waves ‘‘cancel ou
i.e., whether the center of the central bead suffers any mo
at any time. In earlier numerical analyses of limited precis
carried out by Nesterenko, it was found that the solita
waves underwent perfect annihilation at the point of cro
ing. Figure 1 shows a 3D plot of kinetic energy versus d
tance~measured in bead diameters! and time for half of the
chain length. There appears to be no residual motion at
center of the central bead from the data in Fig. 1. As we s
see, more resolution of the data reveals that there is no
tion of the central bead at any time and that there is sign
cant motion of the elastic beads in the immediate vicinity
the central bead.

In Fig. 2, we present the same data with energy resolu
that is 104 times greater than that in Fig. 1. As alluded
above, more scrutiny reveals that while there is no resid
motion at the point of intersection, the adjacent beads be
to oscillate or ‘‘rattle.’’ This behavior is evident upon ob
serving the temporal behavior of grains 249 and 251
those beyond in either direction. Such rattling gives rise
the generation of multiple solitary waves of progressiv
diminishing amplitudes, which move at progressively slow
velocities. We call these waves, ‘‘secondary’’ solitary wav

Figure 3 describes the temporal displacements of a few
the neighbors of the central bead where the solitary wa
cross. The calculations suggest that secondary solitary w
with progressively weakening amplitudes would be gen

FIG. 1. Data shows the crossing of two identical solitary wav
traveling in opposition in a chain of Hertzian beads. Kinetic ene
of grain, time and grain positions are represented in linear o
from chain ends and are all depicted in arbitrary units.
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ated by neighbors that are farther removed from the cen
bead. The residual motion typically involves some 0.5%
the total kinetic energy of the two solitary waves. Not su
prisingly, the hierarchy of secondary solitary waves, as
ported here, was not observed in earlier calculations@17#.

IV. SOLITARY WAVE FORMATION IN TIME-REVERSED
DYNAMICS

An important issue to address is whether the magnitu
of the secondary waves are comparable to the unavoid
numerical errors that are incurred during a numerical cal

s
y
er

FIG. 2. The plot shows that smaller solitary waves of progr
sively decaying amplitude and velocity are created after the in
section of the solitary waves, which possess energies that are a
1024 of the original solitary waves. Observe that only a part of t
original solitary waves is visible. Kinetic energy of grain, time a
grain positions are represented in linear order from chain ends
are all depicted in arbitrary units.

FIG. 3. The vertical axis shows the relative displacements
beads~in arbitrary units! adjacent to grain number 250 where co
lision occurs as function of time~in arbitrary units!. The dashed
lines represent the equilibrium positions of the beads. Each horiz
tal solid line shows the displacement of a bead with respect to
original equilibrium position. Observe that the central grain do
not move in time.
4-3
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FIG. 4. Figures show velocities~in arbitrary units! of grains versus grain positions in linear order from chain ends~in arbitrary units!. ~a!
Initial system, with two solitary waves moving toward each other.~b! The rest of the chain is initially at rest.~c! After solitary waves cross,
some energy remains behind in the chain.~d! A magnification ofy axes shows than this energy propagates as secondary solitary wave~e!
After running the system in~c! back in time, a system almost identical to that in~a! is obtained.~f! The small differences between th
systems are due to numerical errors. Please observe the order of magnitude of the noise.~g! Same as in~e! but now the secondary solitar
waves in the system of~c! are removed before the time-reversal procedure.~h! Secondary solitary waves are again obtained.
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lation. Figure 4~a! shows a snapshot of two equal solita
waves propagating toward each other. Figure 4~b!, present
data with significantly higher resolution that reveals there
no motion of the grains located between the positions of
incoming pulses at the instant of time at which Fig. 4~a! has
been recorded.

In Fig. 4~c! we present a snapshot at a time instant t
records the grain dynamics after the pulses have crossed
other. Although the pulses appear to remain undistorted a
traveling through one another, it can be seen that some s
energy bundles, trapped as secondary solitary wave pu
seem to lag the main pulses~in the region between the mai
pulses!. In Fig. 4~d! we magnify the data along the vertic
axis by a factor of 100, such that the secondary waves
come visible. These figures reveal that the crossing of s
tary waves in discrete chains leads to the formation of s
ondary solitary waves.

Since the Newtonian dynamics of a system should rem
unchanged under time-reversal, we integrated the sys
shown in Fig. 4~c! backward in time and obtained Fig. 4~e!.
In Fig. 4~e!, the system has been restored to the state c
tured in Fig. 4~a!. As in any calculation, our numerical inte
gration causes errors. The magnitudes of such errors ar
corded in Fig. 4~f!. The reader may observe that the ‘‘noise
generated by numerical errors is many orders of magnit
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smaller than the secondary solitary waves.
Another test of numerical accuracy was done as follow

We started our numerical simulations with the system in
state represented in Fig. 4~c! except that we kept only the
main pulses and reset to zero the secondary waves betw
pulses. Observe that the solitary waves are about to col
Hence, the directions of propagation of the solitary waves
Fig. 4~g! are reversed with regard to the same in Fig. 4~c!.

The main pulses~which now behave as independent so
tary waves! again generate secondary waves upon collisi
These pulses are shown in Fig. 4~h! and closely resemble th
secondary solitary waves shown in Fig. 4~d!. We conclude
that the secondary waves generated after the collision of
solitary waves are not due to the errors of the numer
integration.

V. HIERARCHY OF SECONDARY SOLITARY WAVES

As shown in Figs. 2 and 3, the secondary solitary wa
possess much smaller amplitudes and hence move m
slower compared to the original solitary waves. Their sm
magnitudes make numerical analysis of dynamics of th
objects rather challenging. To probe the time evolution of
secondary solitary waves, one must not only carry out sim
lations over significantly longer times, but also with high
4-4
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CROSSING OF IDENTICAL SOLITARY WAVES IN A . . . PHYSICAL REVIEW E63 016614
precision. In the reported data, the precision associated
the kinetic energies of beads is at least 4 orders of magni
larger than the accuracies at which round-off errors are
curred. We have carried out our analyses using the maxim
accuracy that we can accommodate and yet maintain rea
able calculation times@23#.

Our dynamical simulationssuggestthat the formation of
the secondary solitary waves is a consequence of the dis
nature of the beads in the Hertzian system. In the continu
approximation, that is invoked in the long wavelength
gime, the details of motion of grains that are located adjac
to the point of intersection of solitary waves are coa
grained and hence may even disappear. Therefore, in e
ing theoretical analyses of dynamics of Hertzian syste
secondary solitary waves may not appear at all.

An interesting question that arises is whether second
solitary waves should be expected to exist in all other d
crete systems that support solitary waves of finite size
what role does the size of the solitary wave play in elimin
ing secondary solitary waves. Our preliminary calculatio
suggest that secondary solitary waves may not necess
arise in all discrete systems. However, given the difficu
level of this problem, further analysis is necessary@24# be-
fore one can draw definitive conclusions about which d
crete systems, in general, will admit secondary solit
waves.

Figure 5~a! shows the maximum displacement, veloc
and acceleration of the secondary solitary waves as a f
tion of the order of the solitary waves. Given the rapid dec
in the magnitudes of the quantities measured with respec
the order of secondary solitary wave and the fact that
decay looks rather similar when plotted using log–l
@shown in Fig. 5~a!# and semi-log scales, it is also difficult t
draw definitive conclusions about the pattern associated
the decay.

To test our intuition about the formation of seconda
solitary waves at or near an interface, we searched for
spawning of secondary solitary waves formed immediat
after an impulse has been imparted to an end of a chai
Hertzian beads. Our results are shown in Fig. 5~b!. Once
again, we find that the maximum displacement, velocity a
acceleration of secondary solitary waves decay with incre
ing order of the solitary wave.

To the best of our knowledge, this work presents the fi
systematic study that suggests that any impulse generate
a chain of Hertzian grains is likely to ‘‘quantize’’ itself into
successive solitary waves of fixed width but progressiv
decaying amplitude at a boundary.

VI. SUMMARY AND CONCLUSIONS

In closing, we have presented a numerical study of
equation of motion that describes the dynamics of individ
grains in a chain of Hertzian beads with zero loading. W
confirm that an impulse propagates as a solitary wave
chain of Hertzian grains. We further demonstrate that
01661
ith
de
-
m
n-

ete
m
-
nt
e
st-
s,

ry
-
d
-
s
ily

-
y

c-
y
to
e

th

e
y
of

d
s-

t
on

y

e
l

e
a
e

crossing of identical solitary waves in chains of discre
Hertzian grains lead to the spawning of weak secondary s
tary waves at the point of intersection of the solitary wav
The hierarchy of magnitudes of these secondary solit
waves appears to depend upon the details of the Hertz
@20#.

We hope that the present contribution will stimulate d
tailed experimental analyses of secondary solitary waves
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FIG. 5. ~a! Maximum displacement, velocity and acceleratio
~all in arbitrary units! of the secondary solitary waves that a
formed at the point of crossing.~b! Maximum displacement, veloc
ity and acceleration~all in arbitrary units! of the secondary solitary
waves that form at the boundary at which the impulse is initiate
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