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Crossing of identical solitary waves in a chain of elastic beads
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We consider a chain of elastic beads subjected to vanishingly weak loading conditions, i.e., the beads are
barely in contact. The grains repel upon contact via the Hertz-type potantial), n>2, wheres=0, é being
the grain—grain overlap. Our dynamical simulations build on several earlier studies by Nesterenko, Coste, and
Sen and co-workers that have shown that an impulse propagates as a solitary wave of fixed spatial extent
(dependent only upon) through a chain of Hertzian beads and demonstrate, to our knowledge for the first
time, that colliding solitary waves in the chain spawn a well-defined hierarchy of multiple secondary solitary
waves, which is~ 0.5% of the energy of the original solitary waves. Our findings have interesting parallels
with earlier observations by Rosenau and colleagfesRosenau and J. M. Hyman, Phys. Rev. L#®.564
(1993; P. Rosenaubid. 73, 1737(1994; Phys. Lett. A211, 265(1996] regarding colliding compactons. To
the best of our knowledge, there is no formal theory that describes the dynamics associated with the formation
of secondary solitary waves. Calculations suggest that the formation of secondary solitary waves may be a
fundamental property of certain discrete systems.
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[. INTRODUCTION details of the model system and summarizes the details of the
calculations. The calculations on the crossing of solitary

The study of impulse propagation in a chain of coupledwaves in a chain of discrete beads reveal certain peculiar
elastic beads can exhibit interesting nonlinear dynamicproperties associated with the intersection of the solitary
[1-4)]. In the absence of external loading between the beaddaves that are specific to Hertzian systems and are presented
that are bare'y in Contact, any impu|se propagates as a Soip Sec. Ill. We mention that t.here' are pOSSib|e ConneCtian
tary wave through a chain of elastic bedds-8]. The pres- between the res_ults ob'galned in this work and those obtained
ence of loading destroys the solitary wajie-4,9, which by researchers in a varl_ety of related systems, which are also
becomes dispersive as a function of the magnitude of loadhown as compact solitary waves or compactphé—19.
ing. The nature of dispersion is sensitive to the competitionl he calculations are further checked by carrying out exten-
between the amplitude of the impulse and loading. ThereSive t|m'e-r.eversed dynamlcal stu@es. This is reported in Sec.
fore, the no-loading casi8] is one of the most interesting IV. Preliminary stud|e_:s on the h_|erarchy of splltary waves
regimes in which one can probe the nonlinear dynamicaihat spawn at the point of crossing of the solitary waves is
problem of impulse propagation in Hertzian beads. It turngdiscussed in Sec. V. The work is summarized in Sec. VI.
out that in the absence of loading, any impulse, no matter
how weak, generates solitary waves in the chain of elastic Il. MODEL SYSTEM AND ANALYSES
beadd10,11].

It is well known that acoustic signals, which can be ob- We consider a linear system of macroscopic, monodis-
tained by sending an impulse in a chain of elastic beadferse beads of massand radiusR. We letE and o denote
under external loading8,12], backscatter off buried inclu- the Young's modulus and the Poisson ratio, respectively. We
sions in the chain of Hertzian beads. In the absence of suckssume that two such beads repel upon intimate contact ac-
loading, solitary waves also backscatter off impurities or in-cording to Hertz law20]. To proceed further, we define the
clusions in Hertzian chainfl3]. Backscattering of solitary overlap 6;;1=A—(r;+1—r;), wherer; denotes the dis-
waves from buried inclusions exhibit unusual behavior, aglacement of grain from the equilibrium position and is
noted in Ref.[13]. In the present study, we focus on an the initial loading at the grain—grain contacompression at
important idealization of the problem of backscattering oféquilibrium). For spherical beads, the repulsive potential is
solitary waves, namely, one in which two identical solitary given by
waves traveling in opposite directions cross one another.

This problem is also identical to that of backscattering of a V(6 i11)=(2/5D)(R/2)°5,

solitary wave from an infinitely massive impurity at the cen-
ter of a chain and hence may be relevant to the study of the
general problem of backscattering of solitary waves from
impurities. @

This paper is arranged as follows. Section Il presents the =0 if 8 ;+,<0,

Sic1=ad " if §;41=0,
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whereD=3/2({1- ¢?}/E) andn=5/2. If n=2, the repul- z=ct, wheret is the elapsed time since the initiation of the
sive force is harmonic. In general, the constanand the  jnmpyise. One can then rewrite E@) as follows:

magnitude ofn depend upon the contact geometry between

the beads and typically varies betweer 5/2 and 3[21]. mc? d?en(2)/dZ2={nal ¢n(z—2R) — ¢n(2)]""*

Due to the nonlinear nature of the repulsion between adja- n1

cent grains, one might expect that dynamical phenomena in- “len(@=en(zH2R]T, ()
volving significant compression and decompression of grainghich is a convenient form for analyzing the solitary wave
would be highly nonlinear in nature. _ propagation problem. The subscriptn ¢, is to remind the

_ Nesterenkd 1-4] used a certain continuum approxima- reader that the properties of are sensitive to the contact
tion of the relevant equations of motion to show that angepmetry and hence an[21,23. In Eq. (3), we use for the
impulse initiated in a horizontally aligned system of beadsggjitary wave solutiong,(z—ct)=(r;(t)—r;(0)) and ¢((z
would travel as a solitary wave when it is far from the +2R) = ct)=(r ., (t)—r;.,(0)).

boundary. In addition, Nesterenko showed that his solitary The approximate analytic solution to E(B), which is
waves spanned some S bead diamefdrs4]. Nesterenko gescribed in Refi8] and is in impressive agreement with the

also carried out numerical studies on impulse propagatiopmerically generated solution, can be written as
albeit with less accuracjl] than what we shall see in the
A fn(2)
1-tan >

present work and reported experiments to demonstrate the
propagating solitary wavef2,4]. Recently, high accuracy <Pn(2):§
numerical work to improve upon Nesterenko’s long wave-
length approach has been carried out by Chatt¢fjgeSev-  where
eral experiments have since confirmed the presence of soli- o
tary waves in Hertzian systenig,7,22. It is important to _ 20+1
note that Nesterenko and co-workers did not publish analyti- fn(2) _qgo Cag+1(N2 ' ©
cal, computational or experimental studies on the problem of .
crossing of two identical solitary waves. Recent work carried! he coefficientsCyq.1(n) depend onn only and can be
out by some of us have extended Nesterenko’s theoretic&l€termined by substituting E¢d) into Eq.(3), and minimiz-
studies and described the structure of solitary waves in syd0d the integral of the squared difference between the right-
tems of discrete bead40]. To the best of our knowledge, hand side and the left-hand side. Hor5/2, C;=2.3953,
the problem of crossing of solitary waves in Hertzian beadCs=0.2685,C5=0.006 13. The higher order coefficients are
chains remains to be explored. significantly smaller thaiCs .

The equation of motion of some beadexcluding the Our calculations show that for=5/2, the solitary wave

edge grainkin a finite chain of Hertzian beads is given by Spans about 5 bead diamet¢i),13 in perfect agreement
with Nesterenko'’s theoretical and experimental findif@js

, 4

A2 e r n—1 Using our approach, we also recover that the speed of the
mePr, /dt*=na{lA—(r—ri-y)] solitary wavecxAY4, whereA is the amplitude of displace-
—[A=(rj,—r)]" 1 (20  ment of a bead due to the solitary wave.

The reader should note th#tere is no exact continuum
limit of the problem of impulse propagation in discrete Hert-
zian chains under conditions of no-loadingherefore, Nes-
terenko’s analyselsl—4| and that of Chatterjefel] cannot be

Initially, every grain is placed barely in touch with one an-
other such thath=0. We call this the “no-loading” case.

An impulse defined by an initial velocity, at timet=0 is directly compared with our work. In our work we have at-

initiated at the first bead.e., at the boundajy As the im- ) .
pulse propagates, we find via numerical studies that a We"t_empted to directly solve the equation of motidiy. (3)] by

; ; . . . trial and error. The validation of our solution is presented via
defined solitary wave develops in space and time. Typically )
. ; . the excellent agreement between the numerically generated
a series of solitary waves of much smaller amplitude are alsQ

; ) : ; and the analytically generated solutions in R&f)]. The key
generatgd by an arb|trar.y |_mpulse. The details .Of the 'mpws.%ifference between our solution and of the other researchers
generation process are |nt|mately connected with that of SO“ﬁe in the fact that we do not need to consider a portion of our
tary wave formation. Thus, impulses generated over modest, .. .

) . . .~ ~solution to generate the solitary wave.
time wmdows(co_mpared to the naturall period of the.grams One may note that a similar problem has been studied for
due to the Hertzian potentjatan result in the generation of

. . . . . the case on=4 (but not for a system of beads with no-

multiple solitary waves of hierarchical amplitudes. At loadi heres=0) by Kivshar in Ref[18]
present, much work remains to be done to understand theading whereo= ) by lvshar 'rl € P
problem of impulse generation versus solitary wave forma- In our numerlcal cqlculatlonsnél, a=1vo= 1.’ and the
tion [8,13]. We shall address this issue later in Sec. V. |ntegrat|on. time step IS kept at 1 . The calculations h:?\ve

Let us focus on the properties of the solitary wave itseh‘.been carried .OUt using the sixth order Gear predictor—
High precision(nine digit accuracy in energy calculations corrector algorithrr} 20,
that demonstrate that energy conservation is accurately valid
in our calculations numerical study of Eq(2) reveals that
the solitary wave propagates at a fixed velocityience, the We describe a study in whictwo solitary wavegas op-
distance traveled by a solitary wave can be represented hyosed to impulses, which invariably generate a hierarchy of

[ll. CROSSING OF IDENTICAL SOLITARY WAVES
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FIG. 1. Data shows the crossing of two identical solitary waves
traveling in opposition in a chain of Hertzian beads. Kinetic energy  FIG. 2. The plot shows that smaller solitary waves of progres-
of grain, time and grain positions are represented in linear ordesively decaying amplitude and velocity are created after the inter-
from chain ends and are all depicted in arbitrary units. section of the solitary waves, which possess energies that are about
10~ * of the original solitary waves. Observe that only a part of the

solitary waves of same amplitude but opposite displace original solitary waves is visible. Kinetic energy of grain, time and
y P PP P rain positions are represented in linear order from chain ends and

ments are initiated at the two ends of a chain with an odcgre all depicted in arbitrary units
number of beads. The system is set up in such a way that the '

solitary waves intersect one another at teaterof the cen- o by neighbors that are farther removed from the central

tral bead of the chain. It should be mentioned that the result§e 4 The residual motion typically involves some 0.5% of
of collision between solitary waves may be slightly different o tstal kinetic energy of the two solitary waves. Not sur-

if they do not collide at the center bead but at an arbitrary, risingly, the hierarchy of secondary solitary waves, as re-
point along the line joining a bead center to the contact pOir;Eorted here, was not observed in earlier calculatid.
between two beads. We do not carry out a systematic stu
of such “off-center” collisions in this first study.

An important question to address is whether at the poin{V- SOLITARY WAVE FORMATION IN TIME-REVERSED

of intersection, the opposing solitary waves “cancel out,” DYNAMICS

i.e., whether the center of the central bead suffers any motion ap important issue to address is whether the magnitudes

at any time. In earlier numeric_al analyses of limited preci_sionof the secondary waves are comparable to the unavoidable
carried out by Nesterenko, it was found that the solitarynymerical errors that are incurred during a numerical calcu-
waves underwent perfect annihilation at the point of cross-

ing. Figure 1 shows a 3D plot of kinetic energy versus dis-
tance(measured in bead diameteend time for half of the 00T rain 252
chain length. There appears to be no residual motion at the o
center of the central bead from the data in Fig. 1. As we shall
see, more resolution of the data reveals that there is no mo-
tion of the central bead at any time and that there is signifi-
cant motion of the elastic beads in the immediate vicinity of
the central bead.
In Fig. 2, we present the same data with energy resolutiong | . .

that is 1¢ times greater than that in Fig. 1. As alluded to [

-Grain 248 J

r Grain 251
0.2

0.0 Grain 250

placement

o
N

above, more scrutiny reveals that while there is no residual ,
motion at the point of intersection, the adjacent beads begin

to oscillate or “rattle.” This behavior is evident upon ob- 06 L '
serving the temporal behavior of grains 249 and 251 and 200 ' 300
those beyond in either direction. Such rattling gives rise to Time

the generation of multiple solitary waves of progressively piG. 3. The vertical axis shows the relative displacements of
diminishing amplitudes, which move at progressively slowerheads(in arbitrary unit$ adjacent to grain number 250 where col-
velocities. We call these waves, “secondary” solitary waves.jision occurs as function of timéin arbitrary unit3. The dashed

Figure 3 describes the temporal displacements of a few Qfnes represent the equilibrium positions of the beads. Each horizon-
the neighbors of the central bead where the solitary wavegil solid line shows the displacement of a bead with respect to its
cross. The calculations suggest that secondary solitary wavegiginal equilibrium position. Observe that the central grain does
with progressively weakening amplitudes would be genernot move in time.
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FIG. 4. Figures show velocitigin arbitrary unit$ of grains versus grain positions in linear order from chain dirdarbitrary unit$. (a)
Initial system, with two solitary waves moving toward each otliier The rest of the chain is initially at regt) After solitary waves cross,
some energy remains behind in the cha&).A magnification ofy axes shows than this energy propagates as secondary solitary ¥&ves.
After running the system iric) back in time, a system almost identical to that(a is obtained.(f) The small differences between the
systems are due to numerical errors. Please observe the order of magnitude of theggh8iame as ir{e) but now the secondary solitary
waves in the system df) are removed before the time-reversal proced(iteSecondary solitary waves are again obtained.

lation. Figure 4a) shows a snapshot of two equal solitary smaller than the secondary solitary waves.

waves propagating toward each other. Figu(e),dpresent Another test of numerical accuracy was done as follows.
data with significantly higher resolution that reveals there isWe started our numerical simulations with the system in the
no motion of the grains located between the positions of thatate represented in Fig(c} except that we kept only the
incoming pulses at the instant of time at which Figeidas main pulses and reset to zero the secondary waves between
been recorded. pulses. Observe that the solitary waves are about to collide.

In Fig. 4(c) we present a snapshot at a time instant thaHence, the directions of propagation of the solitary waves in
records the grain dynamics after the pulses have crossed eaEly. 4(g) are reversed with regard to the same in Fig) 4
other. Although the pulses appear to remain undistorted after The main pulseswhich now behave as independent soli-
traveling through one another, it can be seen that some smaliry wave$ again generate secondary waves upon collision.
energy bundles, trapped as secondary solitary wave pulseBhese pulses are shown in Fighftand closely resemble the
seem to lag the main pulsé@s the region between the main secondary solitary waves shown in Figd# We conclude
pulses. In Fig. 4d) we magnify the data along the vertical that the secondary waves generated after the collision of two
axis by a factor of 100, such that the secondary waves besolitary waves are not due to the errors of the numerical
come visible. These figures reveal that the crossing of soliintegration.
tary waves in discrete chains leads to the formation of sec-
ondary solitary waves.

Since the Newtonian dynamics of a system should remain
unchanged under time-reversal, we integrated the system As shown in Figs. 2 and 3, the secondary solitary waves
shown in Fig. 4c) backward in time and obtained Fige}. possess much smaller amplitudes and hence move much
In Fig. 4(e), the system has been restored to the state caslower compared to the original solitary waves. Their small
tured in Fig. 4a). As in any calculation, our numerical inte- magnitudes make numerical analysis of dynamics of these
gration causes errors. The magnitudes of such errors are rebjects rather challenging. To probe the time evolution of the
corded in Fig. 4f). The reader may observe that the “noise” secondary solitary waves, one must not only carry out simu-
generated by numerical errors is many orders of magnituditions over significantly longer times, but also with higher

V. HERARCHY OF SECONDARY SOLITARY WAVES
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precision. In the reported data, the precision associated with;
the kinetic energies of beads is at least 4 orders of magnitude_

Q
larger than the accuracies at which round-off errors are in- § 10 s
curred. We have carried out our analyses using the maximumg
accuracy that we can accommodate and yet maintain reasony 10 o
able calculation timef23]. T B o o

Our dynamical simulationsuggesthat the formation of 2 10 4 i ° o o o

the secondary solitary waves is a consequence of the discreteé 3 Z o 000
nature of the beads in the Hertzian system. In the continuum= 19 a 0P
approximation, that is invoked in the long wavelength re- o ] @ © Maximum Displacement A4 Op
gime, the details of motion of grains that are located adjacenty 10 O Maximum Velocity %a
to the point of intersection of solitary waves are coarse § 4 Maximum Acceleration .
grained and hence may even disappear. Therefore, in exist-> ' 10

ing theoretical analyses of dynamics of Hertzian systems, Order of Solitary Wave

£

=
secondary solitary waves may not appear at all. % w4 o

An interesting question that arises is whether secondaryi 3

solitary waves should be expected to exist in all other dis- o
crete systems that support solitary waves of finite size and > | o
what role does the size of the solitary wave play in eliminat- é 1073 o °
ing secondary solitary waves. Our preliminary calculations ¢ ] A o ©
suggest that secondary solitary waves may not necessarilyg l A o %o
arise in all discrete systems. However, given the difficulty g 10'?'3 (o) © Maximum Displacementa U
level of this problem, further analysis is necessg¥] be- g 3 O Maximum Velocity A
fore one can draw definitive conclusions about which dis- g A Maximum Acceleration N
crete systems, in general, will admit secondary solitary 10— y y ———

waves. 1 Order of Solitary W "0

Figure 5a) shows the maximum displacement, velocity rder of Solitary Wave
and acceleration of the secondary solitary waves as a func- fiG. 5. (a) Maximum displacement, velocity and acceleration
tion of the order of the solitary waves. Given the rapid decayall in arbitrary units of the secondary solitary waves that are
in the magnitudes of the quantities measured with respect tfdrmed at the point of crossingb) Maximum displacement, veloc-
the order of secondary solitary wave and the fact that théty and acceleratiofall in arbitrary unit$ of the secondary solitary
decay looks rather similar when plotted using log—logwaves that form at the boundary at which the impulse is initiated.
[shown in Fig. %a)] and semi-log scales, it is also difficult to
draw definitive conclusions about the pattern associated withrossing of identical solitary waves in chains of discrete
the decay. Hertzian grains lead to the spawning of weak secondary soli-

To test our intuition about the formation of secondarytary waves at the point of intersection of the solitary waves.
solitary waves at or near an interface, we searched for th&he hierarchy of magnitudes of these secondary solitary
spawning of secondary solitary waves formed immediatelyvaves appears to depend upon the details of the Hertz law
after an impulse has been imparted to an end of a chain ¢20].
Hertzian beads. Our results are shown in Fih)50nce We hope that the present contribution will stimulate de-
again, we find that the maximum displacement, velocity andailed experimental analyses of secondary solitary waves.
acceleration of secondary solitary waves decay with increas-
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